Photoresist Design for Elastomeric Light Tunable Photonic Devices

نویسندگان

  • Sara Nocentini
  • Daniele Martella
  • Camilla Parmeggiani
  • Diederik S. Wiersma
چکیده

An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing voltage tunable single and multi-channel optical filter with 1DDPC nano-structure

An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...

متن کامل

Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators

This article reviews mechanically-tunable photonic devices with on-chip integrated MEMS/NEMS actuators. With related reports mostly published within the last decade, this review focuses on the tuning mechanisms of various passive silicon photonic devices, including tunable waveguides, couplers, ring/disk resonators, and photonic crystal cavities, and their results are selectively elaborated upo...

متن کامل

Designing voltage tunable single and multi-channel optical filter with 1DDPC nano-structure

An electro-optic tunable single and multi-channel optical filter based on one-dimensional defective photonic crystal (1DDPC) structure is proposed. A couple of externally tunable defects in arrangement of (AB)5D1(BA)D2(BA)5, where A and B are dielectric materials, D1 and D2 are the tunable defects are used. The defects are composed of the ferroelectric LiNbO3 crystals and two pairs of thin Ag l...

متن کامل

Bragg-Angle Diffraction in Slant Gratings Fabricated by Single-Beam Interference Lithography

A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-walls to a single laser beam in the ultraviolet and requires small coherence length of the laser. No additional beam splitting scheme and no adjustments for laser-beam overlapping and ...

متن کامل

Mechanically tunable three-dimensional elastomeric network/air structures via interference lithography.

We show how to employ an interference lithographic template (ILT) as a facile mold for fabricating three-dimensional bicontinuous PDMS (poly(dimethylsiloxane)) elastomeric structures and demonstrate the use of such a structure as a mechanically tunable PDMS/air phononic crystal. A positive photoresist was used to make the ILT, and after infiltration with PDMS, the resist was removed in a water-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016